Infinite Dimensional Analysis of Pure Jump Lévy Processes on the Poisson Space
نویسنده
چکیده
We develop a white noise calculus for pure jump Lévy processes on the Poisson space. This theory covers the treatment of Lévy processes of unbounded variation. The starting point of the theory is the construction of a distribution space. This space has many of the same nice properties as the classical Schwartz space, but is modified in a certain way in order to be more suitable for pure jump Lévy processes. We apply Minlos’s theorem to this space and obtain a white noise measure which satisfies the first condition of analyticity, and which is non-degenerate. Furthermore, we obtain generalized Charlier polynomials for all Lévy measures. We introduce Kondratiev test function and distribution spaces, the S-transform and the Wick product. We proceed by using a transfer principle on Poisson spaces to establish a differential calculus.
منابع مشابه
Pure Jump Lévy Processes for Asset Price Modelling
The goal of the paper is to show that some types of Lévy processes such as the hyperbolic motion and the CGMY are particularly suitable for asset price modelling and option pricing. We wish to review some fundamental mathematic properties of Lévy distributions, such as the one of infinite divisibility, and how they translate observed features of asset price returns. We explain how these process...
متن کاملFirst Jump Approximation of a Lévy Driven SDE and an Application to Multivariate ECOGARCH Processes
The first jump approximation of a pure jump Lévy process, which converges to the Lévy process in the Skorokhod topology in probability, is generalised to a multivariate setting and an infinite time horizon. It is shown that it can generally be used to obtain “first jump approximations” of Lévy-driven stochastic differential equations, by establishing that it has uniformly controlled variations....
متن کاملNonexpansive mappings on complex C*-algebras and their fixed points
A normed space $mathfrak{X}$ is said to have the fixed point property, if for each nonexpansive mapping $T : E longrightarrow E $ on a nonempty bounded closed convex subset $ E $ of $ mathfrak{X} $ has a fixed point. In this paper, we first show that if $ X $ is a locally compact Hausdorff space then the following are equivalent: (i) $X$ is infinite set, (ii) $C_0(X)$ is infinite dimensional, (...
متن کاملDiffusion Covariation and Co-jumps in Bidimensional Asset Price Processes with Stochastic Volatility and Infinite Activity Lévy Jumps
In this paper we consider two processes driven by diffusions and jumps. The jump components are Lévy processes and they can both have finite activity and infinite activity. Given discrete observations we estimate the covariation between the two diffusion parts and the co-jumps. The detection of the co-jumps allows to gain insight in the dependence structure of the jump components and has import...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005